

Introduction & Review

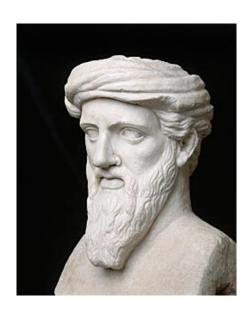
- Immensity of Geologic Time & Implications
- Geological Time
 - Relative Dating
 - Numerical Dating
- Geologic Time Scale
 - A relative Time Scale based on rock sequences and fossil successions, with radiometric dates expressed as years before the present

Stratigraphy

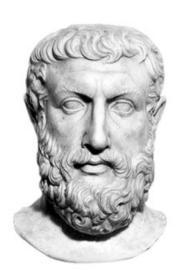
- Study of rock successions
 - sequences of rocks with (relative) time significance
 - sedimentary rocks and a few igneous rocks
- Correlation (of)
 - to correlate means to be able to establish equivalency in time
- Geological events and processes in time and space
 - anything recorded in rocks is an "event"
 - events can follow each other in time (a relative sequence)
 - events can occur simultaneously at different locations (hence, they can be correlated)

Stratigraphy: Rock Successions, Correlation, Geological Events

Mississippian (Lower Carboniferous) sequence from Arrow Canyon, Nevada CSULA Stratigraphy field trip, 2015 © Alessandro Grippo

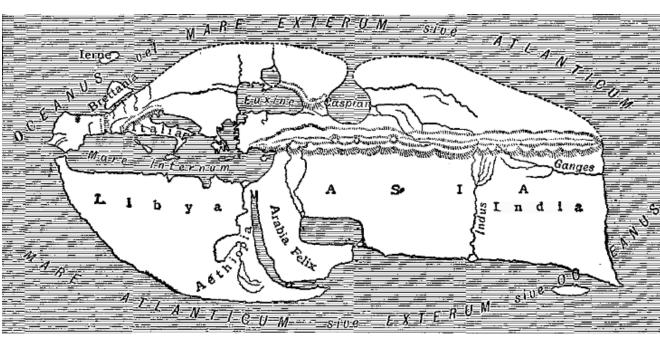

Early Concepts

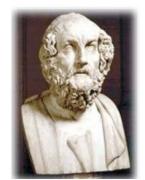
of Stratigraphy, Geologic Time, and Earth's Age


- Perception of natural world was different in different parts of the world
 - Far East: Earth eternal and immutable
 - India: Earth changes in infinite cycles of creation
 - Greece: more realistically, Earth changed because of natural laws (no Gods necessary)
 - Fossils recognized (not always, not by everybody) as remnants of ancient forms of life

Greeks

- Pythagoras, Herodotus (6th / 5th century BC)
 - shells on mountaintops were marine in origin
 - then ocean must at some time have covered mountains
 - still, fossils of Nummulites in Pyramids limestone were from lentils?
- Xenophanes (5th century BC)
 - shells on mountaintops prove that change is possible, and land and ocean can "blend" together





Greeks and Romans

- Aristotle (4th century BC)
 - fossils produced by "formative force" imitating extant organisms
- Strabo (64 BC 24 AD)
 - fossils on land: sea level rises and falls, subsidence, uplifting
 - "derive explanations from obvious and daily occurrence"
 - made excellent geographic maps for the time

Romans (1)

- Pliny the Elder (23 AD 79 AD)
 - Historia Naturalis (first ever encyclopedia on nature)
 - changes on Earth because of natural causes
 - died while witnessing volcanic eruption at Pompeii

The ruins of Pompeii with Mount Vesuvius in the background, Naples, Italy

© from news.nationalgeographic.com)

Romans (2)

- Tertullian (155 AD 240 AD)
 - Advent of Christianity
 - Tried to fit natural laws into religion
- Edict of Constantin (AD 315)
 - Christian religion becomes official
 - Freedoms restricted
- Hypatia (370 AD 415 AD)
 - Science and philosophy were blasphemy
 - Hypatia accused of magic, killed, dismembered, burned by Christians
- Fall of Roman Empire (AD 476)

Dark Ages

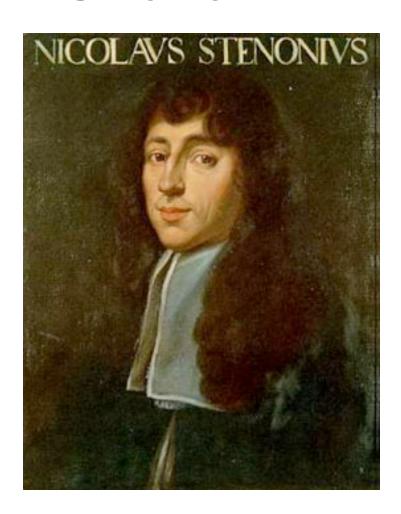
- Western world in ruins
- Many science and philosophy books erased to print prayers and religious tales
- Arab invasion of Middle East, northern Africa, Spain, Sicily
- Arabs discovered western science but kept similar attitudes towards science, except for a few philosophers, such as Avicenna
- Avicenna (*Ibn-Sina*, 980-1037)
 - translated Greek and Roman works
 - fossils as organic materials
 - possibly failed attempts to life

Early Renaissance

- Albertus Magnus (Swabia, Germany, 1200 -1280)
 - fossils as remains of living organisms
- Leonardo Da Vinci (Tuscany, Italy, 1452-1519)
 - erosion, transportation deposition
 - action of rivers
 - superposition, correlation, sedimentary sequences
 - so famous for his works of art and engineering that his geologic notes were overlooked

Renaissance

- Georgius Agricola (George Bauer, Saxony, Germany, 1556)
 - De Re Metallica
 - Ore deposits and mining industry
 - Understood Superposition
- Ulisse Aldrovandi (Bologna, Italy, 1522-1605)
 - defined by Linnaeus as "the father of Natural History"
 - first to use the word "geology" in its proper scientific meaning


Religious opposition to Science

- James Ussher (Ireland, 1581-1656)
 - established "age of Earth" based on Bible genealogy
 - said Earth was "created" by God on 10/23/4004 BC
 - This date was officially accepted by the church
 - It was considered heresy to dispute it
 - Al creatures were individually created by God

Steno and Stratigraphy

- By the early 1600s, stratigraphy started to be at the core of every serious geologic study
- Nicolaus Stenonis, or Steno (born in Denmark, lived in Florence, Italy, 1638-1686)
 - was also a Bishop, like Ussher
- Was the first to clarify the three basic principles of stratigraphy:
 - Superposition
 - Lateral Continuity
 - Original Horizontality

NICOLAI STENONIS

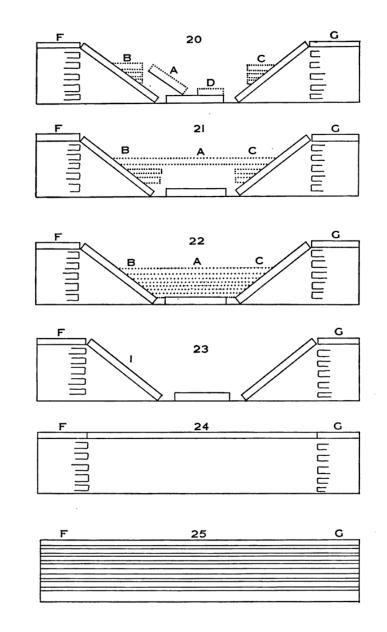
DE SOLIDO

INTRA SOLIDVM NATURALITER CONTENTO

DISSERTATIONIS PRODROMVS.

AD .

SERENISSIMVM


FERDINANDVM II.

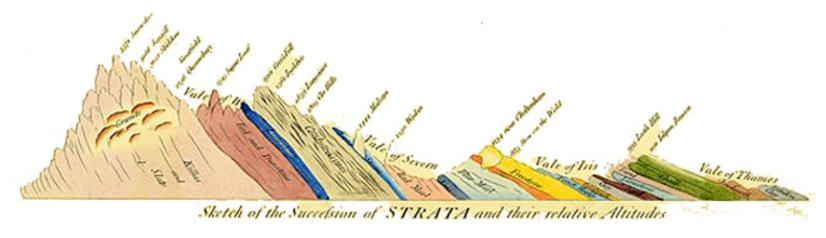
MAGNYM ETRVRIÆ DVCEM.

FLORENTIE

Ex Typographia fub figne STELLE MOCLXIX. SVPERIORVM PERMISSV.

Georges-Louis Leclerc, Comte de Buffon

- Buffon (France, 1707-1788)
 - First ever to compare humans and apes
 - Hypothesized common ancestry
 - Convinced of organic change
 - Said Earth could not be only 6000 years old
 - Fascinated by diversity of life
 - Pursued causes and explanations beyond dogma
 - Paved the way for subsequent revolutionary thinkers


Uniformitarianism

- James Hutton (Scotland, 1726-1796)
 - Uniformitarianism
 - "The present is the key to the past"
 - "Deep Time"
 - Unconformities
 - Cycles of erosion, transportation, deposition, burial, uplifting
 - "No vestige of beginning no prospect of an end"
 - His ideas contradicted religious beliefs

Principle of Floral and Faunal Succession (Principle of Fossil Succession)

- William Smith (England, 1769-1839)
 - Industrial revolution (starting in 1760s) prompted search for sources of energy
 - Canals were cut to bring Coal to coastal harbor cities
 - Smith was an engineer who cut canals
 - He learned his rocks, the sequence, their fossil contents

William Smith's "Sketch of the Succession of STRATA and their Relative Altitudes

William Smith

- Fossils found in a sequence always follow each other in a specific order
- The order was the same even when rocks were found as isolated layers at different locations
- It was then possible to correlate these layers with each other based on fossil content (and not the kind of rock)
- This is the Principle of Faunal and Floral Succession:
 - fossil faunas and floras follow each other in a sedimentary sequence according to a known and predictable order

 Smith's discoveries allowed him to publish the first large-scale Geologic Map ever conceived

William Smith's "Strata of England and Wales" geologic map, preserved at the headquarters of the Geological Society of London, England

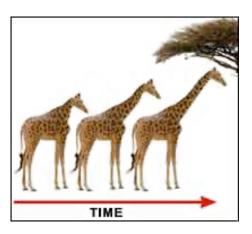
Catastrophism, Gradualism, Uniformitarianism

- George Cuvier (France, 1769-1832)
 - pioneer of Catastrophism, as opposed to Uniformitarianism
 - he was the first to recognize extinctions, but said they happened because of natural catastrophes

- Charles Lyell (England, 1797-1875)
 - Principles of Geology (1830), publicized Hutton's' work
 - "Gradualism", his own, extreme version of Uniformitarianism

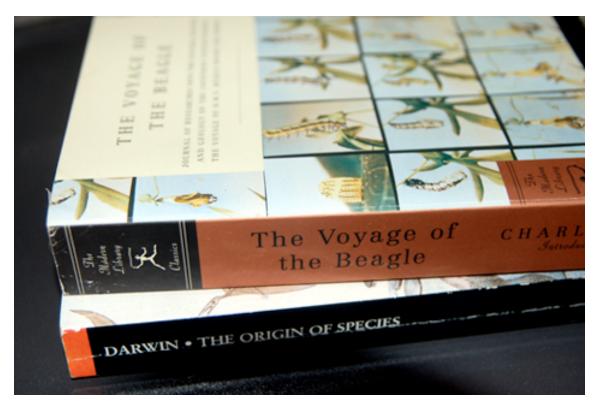
Life is not spontaneous

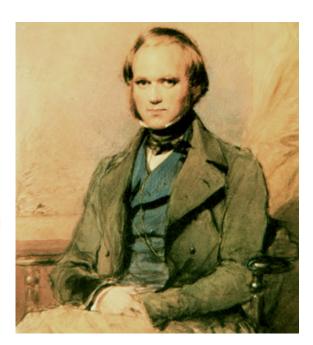
- Lazzaro Spallanzani (Reggio Emilia, Italy, 1729-1799)
- worked with Laura Bassi (Bologna, Italy, 1711-1788)
 - first female University professor in Europe
- Spallanzani:
 - experimented with life
 - demonstrated that life cannot arise by spontaneous generation but only through reproduction
 - that is, life cannot be "created" by spirits or Gods



Evolution (1)

- Jean-Baptiste Lamarck (France, 1744-1829)
 - life arose from spontaneous generation, at different times through Earth history
 - life forms were not fixed: evolution of life through natural processes
 - · change through use and disuse
 - inherent change because nature goes from simple to complex
 - British naturalists, still lagging behind, refused his "blind primal force" ideas: life was a reflection of God's benevolent design




Evolution (2)

- Charles Darwin (England, 1809-1882)
 - trip aboard HMRS The Beagle in the 1830s, with Lyell's Principles of Geology
 - observed Principle of Uniformitarianism in his trip
 - developed Theory of Evolution by Gradual Variation and Natural Selection
 - published On the Origin of Species by Means of Natural Selection

Evolution (3)

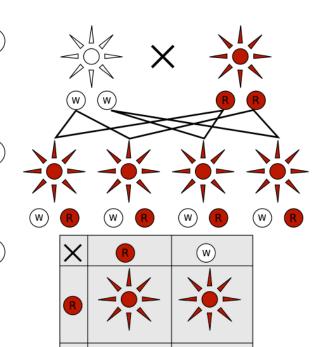
- Darwin's theory also explained Smith's Principle of Fossil Succession
- When both are applied to Steno's Superposition, we realize that we can use fossils for dating and correlation
- Darwin's problem with the Precambrian
 - Evolution worked in the Phanerozoic;
 Precambrian record was absent
 - Nobody knew we had to look for soft-bodied fossils of bacteria and primitive organisms
 - Even if we had known, we did not have the technology to look for them

Evolution (4)

- Lamarck and Darwin looked at the same evidence but their ideas were different:
 - Darwin did not accept the arrow of increasing complexity driving life history
 - Darwin said that change occurred only because of adaptation of life to changing environments from generation to generation
 - in the end, even Darwin did not know about genetic inheritance

Lamarck	Darwin
 Use and disuse 	Variation
 Transmission of acquired characteristics 	InheritanceDifferential
 Increasing complexity 	survival
♦ No extinction	Extinction

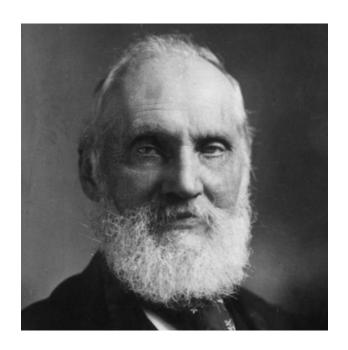
Evolution (5)


- Alfred Russel Wallace (England, 1823-1913)
 - Friend and correspondent of Darwin
 - Came up with theory of Evolution by Natural Selection independently from Darwin
 - Darwin thought evolution arose from competition between individuals of the same species to feed and reproduce
 - Wallace thought evolution arose from environmental pressure on species

Evolution (6)

- Gregor Mendel (Moravia, Czech Republic, 1822-1884)
 - Experiments on Plant Hybridization (1865)
 - Laws of inheritance
 - His ideas rediscovered in 1900

Evolution + Fossils = Range Zones (Biostratigraphy)


- Alcide d'Orbigny (France, 1802-1857)
 - developed Smith's principles into the concept of Fossil Assemblages (associations of two or more fossils)
- Albert Oppel (Germany, 1831-1865)
 - Oppel tried to use d'Orbigny ideas in Germany
 - Fossils were not matching (nobody knew about lateral facies change)
 - established Overlapping Range Zones
 - The range of a taxon is the total vertical interval through which that taxon occurs in the rock record
 - developing Biostratigraphic Zones led to a refined Geologic Time Scale, with the subdivisions we know today

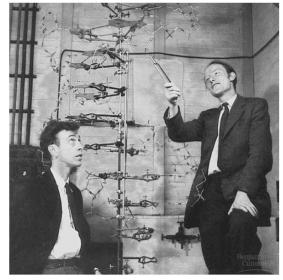
A crisis in Geology

- Lord Kelvin (Ulster, 1824-1907)
 - as a physicist, he estimated the Age of Earth based on the thermal gradient as measured in mines
 - he came up with an estimate of a maximum age of 400 million years of age fro Earth
 - he claimed to have destroyed Uniformitarianism
 - as a theorist, and not a field geologist, he had good math but did not realize that Earth's core maintained a constant temperature through time
 - he messed up with geologists' ideas
 - the discovery of radioactivity destroyed Kelvin's arguments

Radioactivity

- Henri Becquerel (France, 1852-1908)
 - discovered a "mysterious radiation" (1896)
- Marie Curie (Poland, 1867-1934)
 - understood radioactivity in U & Th
 - first female lecturer at the Sorbonne, Paris
- Pierre Curie (France, 1859-1906)
 - together with his wife, they discovered the radioactive elements such as Po & Ra

Becquerel, Marie Curie and Pierre Curie all won a Nobel prize for the discovery of Radioactivity.

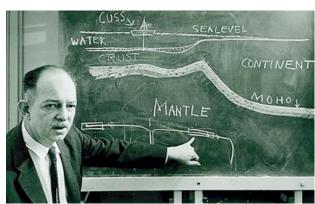

Marie Curie then won a second Nobel prize for her discovery of the element Radium

Other important discoveries: Evolution

- Friedrich Miescher (Switzerland, 1844-1895)
 - discovered DNA
- James Watson (England, b. 1928) and Francis Crick (England, 1916-2004)
 - put DNA evidence together to model the structure of Double Helix (1953)
 - from here, Evolution mechanisms explained

• Continental Drift (1912)

Alfred Wegener (Germany, 1880-1930)


Harry Hess (U.S.A., 1906-1969)

- several geoscientists (1960s)
- Fred Vine (England, b. 1939) and Drummond Matthews (England, 1931-1997)
 - paleomagnetism on ocean floor

Precambrian Life mystery resolved

William Schopf (U.S.A., b. 1941)
 and others

