

chapter overview

- Ocean currents are water masses in motion
- Surface currents are influenced by major wind belts
- Currents redistribute global heat
- Locally, surface currents affect coastal climates
- Thermohaline circulation affects deep currents
- Currents influence marine life by affecting the growth of microscopic algae (basis of most oceanic food webs)

Types of Ocean Currents

- Surface currents
 - Wind-driven
 - Primarily horizontal motion
- Deep currents
 - Driven by differences in density caused by differences in temperature and salinity
 - Vertical and horizontal motions

7.1 – How Are Ocean Currents Measured?

Measuring Surface Currents

Direct methods

- Floating devices whose position is tracked through time
- Fixed current meter (such as a propeller flow meter)

Indirect methods

- Pressure gradients (water flows downhill)
- Radar altimeters (dynamic topography maps)
- Doppler flow meter (use of low-frequency sound signals)

(b)
© 2011 Pearson Education, Inc.

Satellite View (from radar altimeter data) of Global Surface Current Flow, September 1992 to September 1993

Measuring Deep Currents

- It is very difficult to track deep currents
 - Argo program
 - release of thousands floating device that sink to depth, record data, come back to surface, transmit, sink again
 - Identification of distinctive temperature and salinity of deep water masses
 - Chemical tracers
 - Natural
 - Intentionally added
 - Unintentionally added

Argo program

7.2 – What Creates Ocean Surface Currents and How Are They Organized?

- Occur within and above pycnocline, because of frictional drag between wind and ocean
 - to a depth of about 1 km
 - affect only about 10% of world's ocean water
- Affected mostly by major wind belts of the world, so they generally follow wind belt patterns
- Other factors:
 - Distribution of continents and geometry of ocean basins
 - Gravity
 - Seasonal changes
 - Coriolis effect
 - Friction

general surface currents patterns

- Only 2% of wind energy is transmitted to ocean
- On a planet without land masses, ocean currents would follow wind belts, creating large, circular loops (gyres) of moving water
- On a planet with continents, currents are deflected by land
- Example from the Atlantic Ocean

Subtropical Gyres

- There are five Subtropical Gyres
 - North and South Atlantic, North and South Pacific, Indian
 - rotate clockwise in Northern Hemisphere, counterclockwise in the Southern Hemisphere
 - average drift time is between 3 and 6 years
- Gyres are bounded by:
 - Equatorial current
 - Western Boundary currents
 - Northern or Southern Boundary currents
 - Eastern Boundary currents
- Centered around 30° latitude

Subtropical Gyres and Currents

the Four Currents that make up a Subtropical Gyre

All gyres have four main currents flowing into one another:

- Equatorial Currents
 - North or south of the Equator, traveling westward along it
- Western Boundary Currents warm waters
- Northern or Southern Boundary Currents easterly water flow across ocean basin
- Eastern Boundary Currents cool waters

Gyres and Boundary Currents

TABLE 7.1

SUBTROPICAL GYRES AND SURFACE CURRENTS

^bDenotes a western boundary current of a gyre, which is relatively *fast*, *narrow*, and *deep* (and is also a *warm-water* current).

	North Pacific (Turtle) Gyre		North Atlantic (Columbus) Gyre		Indian Ocean (Majid) Gyre
	North Pacific Current		North Atlantic Current		South Equatorial Current
	California Current ^a		Canary Current ^a		Agulhas Current ^b
	North Equatorial Current		North Equatorial Current		West Wind Drift
	Kuroshio (Japan) Current ^b		Gulf Stream ^b		West Australian Current ^a
	South Pacific (Heyerdahl) Gyre		South Atlantic (Navigator) Gyre		Other Major Currents
an	South Equatorial Current	ean	South Equatorial Current	an	Equatorial Countercurrent
000	East Australian Current ^b	000	Brazil Current ^b	Ocean	North Equatorial Current
Pacific Ocean	West Wind Drift	Atlantic Ocean	West Wind Drift	Indian	Leeuwin Current
Pa	Peru (Humboldt) Current ^a	Atl	Benguela Current ^a	In	Somali Current
	Other Major Currents		Other Major Currents		
	Equatorial Countercurrent		Equatorial Countercurrent		
	Alaskan Current		Florida Current		
	Oyashio Current		East Greenland Current		
			Labrador Current		
			Falkland Current		

© 2011 Pearson Education, Inc.

Other Surface Currents

Equatorial Countercurrents

- equatorial currents push water westward
- an eastward flow (between North and South Equatorial Currents) develops because of a higher sea level to the west
- different in the three oceans

Subpolar Gyres

- Rotate opposite subtropical gyres
- Smaller and fewer than subtropical gyres

Other factors affecting ocean surface circulation

- Ekman Spiral
- Ekman transport

Geostrophic currents

Western intensification of subtropical gyres

Ekman Spiral

- Surface currents move at an angle to the wind
- To the right in the NH, to the left in the SH
- Upper layer drags lower layer, but with less energy
- Each successive layer moves increasingly to the right in the Northern Hemisphere
 - Coriolis effect
- Movement stops at about 100 m of depth
- The Ekman spiral describes speed and direction of seawater flow at different depths.

(a) © 2011 Pearson Education, Inc

Ekman Transport

- Average movement of seawater under influence of wind
- 90° to right of wind in NH
- 90° to left of wind in SH
- "Ideal conditions" rarely exist, so on average Ekman transport is 70°
- In coastal waters, might be 0°

Geostrophic Currents

(b) Map view

- Ekman transport piles up water within subtropical gyres.
- Surface water flows downhill and to the right.
- Geostrophic flow: balance of Coriolis Effect and gravitational forces
- Ideal geostrophic flow
- Friction generates actual geostrophic flow

Western Intensification

- The top of the hill of water is displaced toward the west due to Earth's rotation
- Western boundary currents are intensified in both hemispheres
 - Faster, Narrower, Deeper, Warm
- Coriolis Effect contributes to western intensification
- Eastern boundary currents tend to have the opposite properties of Western Boundary Currents
 - Cold, Slow, Shallow, Wide

Eastern and Western Boundary Currents

TABLE 7.2	CHARACTERISTICS OF WESTERN AND EASTERN BOUNDARY CURRENTS OF SUBTROPICAL GYRES

Current type	Examples	Width	Depth	Speed	Transport volume (millions of cubic meters per second ^a)	Comments
Western boundary current	Gulf Stream, Brazil Current, Kuroshio Current	Narrow: usually less than 100 kilometers (60 miles)	Deep: to depths of 2 kilometers (1.2 miles)	Fast: hundreds of kilometers per day	Large: as much as 100 Sv ^a	Waters derived from low latitudes and are warm; little or no upwelling
Eastern boundary current	Canary Current, Benguela Current, California Current	Wide: up to 1000 kilometers (600 miles)	Shallow: to depths of 0.5 kilometer (0.3 mile)	Slow: tens of kilometers per day	Small: typically 10 to 15 Sv ^a	Waters derived from middle lati- tudes and are cool; coastal upwelling common

© 2011 Pearson Education, Inc.

Ocean Currents and Climate

- Warm coastal ocean currents warm the air above. Air absorbs more moisture
 - Warm, humid air
 - Humid climate on adjoining landmass
 - Florida
- Cool coastal ocean currents cool the air above. Air cannot acquire moisture
 - Cool, dry air
 - Dry climate on adjoining landmass
 - California

Ocean Currents and Climate

7.3 – What Causes Upwelling and Downwelling?

- Upwelling Vertical movement of cold, nutrientrich water to surface
 - High biological productivity
- Downwelling Vertical movement of surface water downward in water column
 - Low productivity, but downwelling carries oxygen to deep waters
- Upwelling and downwelling provide important mixing mechanisms between surface and deep waters

How do upwelling and downwelling occur?

- Diverging surface water
- Converging surface water
- Coastal upwelling and downwelling
- Offshore winds
- Seafloor obstructions
- Sharp bends in coastline
- Absence of pycnocline in high-latitude regions

Diverging Surface Water

- Surface waters move away from an area on the ocean's surface
- Example: Trade Winds along the equator
 - Ekman transport to the right in NH
 - Ekman transport to the left in SH
- Equatorial upwelling

Converging Surface Water

- Occurs when surface waters move toward each other
- Water piles up and has no place to go but downward (downwelling)
- Low biological productivity

Coastal Upwelling

- Ekman transport moves surface seawater offshore.
- Cool, nutrient-rich deep water comes up to replace displaced surface waters.
- Example: U.S.
 West Coast

Coastal Downwelling

- Ekman transport moves surface seawater toward shore.
- Water piles up, has no place to go, and moves downward in water column
- Lack of marine life

Other Causes of Upwelling

- Offshore winds
- Seafloor obstruction
- Coastal geometry change
- Absence of a pycnocline

© 2011 Pearson Education, Inc.

7.4 – What Are the Main Surface Circulation Patterns in Each Ocean Basin?

- The specific pattern of surface currents varies from ocean to ocean, depending on:
 - the geometry of the ocean basin
 - the pattern of major wind belts
 - seasonal factors, and other periodic changes
- We are going to look at the surface ocean water circulation of:
 - the Antarctic Ocean
 - the Atlantic Ocean
 - The Indian Ocean
 - the Pacific Ocean

Antarctic Circulation

 Antarctic circulation is dominated by movement of water masses in the southern Atlantic, Indian, and Pacific Oceans, at latitudes south of 50°S

- There are two main currents:
 - Antarctic Circumpolar Current (West Wind Drift)
 - East Wind Drift

Antarctic Circumpolar Current (West Wind Drift)

- Only current to completely encircle Earth
- Powered by the prevailing westerly wind belt
- Moves more water than any other current
- Subtropical convergence located at 40°S

East Wind Drift

- propelled by Polar Easterlies
- Creates surface divergence with opposite flowing West
 Wind Drift

- These two currents create zones of convergence and divergence
- Antarctic Convergence (or Antarctic Polar Front)
 - Cold, dense Antarctic waters converge with warmer, less dense sub-Antarctic waters, at about 50°S
 - Downwelling
 - Northernmost boundary of Antarctic Ocean
- Antarctic Divergence
 - Upwelling
 - Nutrients from the bottom, and as a consequence,
 Abundant marine life

Atlantic Ocean Circulation

- Consists of two large subtropical gyres:
 - North AtlanticSubtropical Gyre
 - South AtlanticSubtropical Gyre

North and South Atlantic Subtropical Gyres

- North Atlantic
 Subtropical Gyre
 - North Equatorial Current
 - Gulf Stream
 - North Atlantic Current
 - Canary Current
 - South Equatorial Current
 - Atlantic Equatorial
 Counter Current

- South Atlantic
 Subtropical Gyre
 - Brazil Current
 - Antarctic Circumpolar
 Current
 - Benguela Current
 - South Equatorial Current
 - Falkland Current

Gulf Stream

- moves
 northward along
 the east coast of
 North America
- warms coastal states
- warms northern Europe

Numbers indicate average flow rates in Sverdrups One Sverdrup is equivalent to 1,000,000 m³/sec

- as a western boundary current, the Gulf Stream is narrow, deep, and fast
- its western margin is abrupt, while its eastern margin is less defined
- it gradually merges eastward with the Sargasso Sea
- the Sargasso Sea is a body of water that circulates around the center of the North Atlantic Gyre
 - Sargassum is a floating marine algae that is particularly abundant in this area

Rings of the Gulf Stream

- Meanders or loops may cause loss of water volume and generate:
 - Warm-core rings: warmer Sargasso Sea water trapped in loop surrounded by cool water. Narrow and shallow
 - Cold-core rings: cold water trapped in loop surrounded by warmer water. Wide and deep. Vertical mixing, with consequent upwelling and abundance of life
- Unique biological populations

Other North Atlantic Currents

- Labrador Current
 - comes from between Newfoundland and Greenland. Mixes with Gulf Stream to create fogbanks in the North Atlantic
- Irminger Current
 - west of Iceland
- Norwegian Current
 - west of Norway
- North Atlantic Current
 - crosses the Atlantic
- Canary Current
 - cold current that closes the gyre by rejoining the North Equatorial Current

Climate effects of North Atlantic Currents

North-moving currents – warm

- the Gulf Stream warms the East coast of the United States and northern Europe
- North Atlantic and Norwegian Currents warm northwestern Europe

South-moving currents – cool

- Labrador Current cools eastern Canada
- Canary Current cools north African coast

Indian Ocean Circulation

- Because of local geography, the Indian Ocean exists mostly in the southern hemisphere
- In winter, equatorial circulation is similar to Atlantic
- proximity to Himalayas and shape of coastline and ocean basin cause it to experience strong seasonal changes

- Seasonal reversals of winds over northern Indian Ocean
- Northeast monsoon (winter)
 - winds blowing from land: dry weather
- Southwest monsoon (summer)
 - winds blowing from ocean: heavy precipitation
- Affect seasonal land weather
- Affect seasonal Indian Ocean current circulation
- Affect phytoplankton productivity

Monsoons

Indian Ocean Subtropical Gyre

Agulhas Current Australian Current

Leeuwin Current

Pacific Ocean Circulation

- North Pacific Subtropical Gyre
 - Kuroshio
 - North PacificCurrent
 - CaliforniaCurrent
 - NorthEquatorialCurrent
 - AlaskanCurrent

- South Pacific Subtropical Gyre
 - East AustralianCurrent
 - AntarcticCircumpolarCurrent
 - Peru Current
 - SouthEquatorialCurrent
 - EquatorialCounterCurrent

Normal Conditions in the Pacific Ocean (Walker Circulation)

(a) Normal conditions

© 2011 Pearson Education, Inc.

Atmospheric-Ocean Connections in the Pacific Ocean

- Walker Circulation Cell normal conditions
 - Air pressure across equatorial Pacific is higher in eastern Pacific
 - Strong southeast trade winds
 - Pacific warm pool on western side of ocean
 - Thermocline deeper on western side
 - Upwelling off the coast of Peru

ENSO (El Niño – Southern Oscillation) Conditions in the Pacific Ocean

(b) El Niño conditions (strong)

© 2011 Pearson Education, Inc.

El Niño – Southern Oscillation (ENSO)

(a) Jan 1998

© 2011 Pearson Education, Inc.

Walker Cell Circulation disrupted

- High pressure in eastern Pacific weakens
- Weaker trade winds
- Warm pool migrates eastward
- Thermocline deeper in eastern Pacific
- Downwelling
- Lower biological productivity
 - Peruvian fishing suffers

La Niña Conditions

(c) La Niña conditions

© 2011 Pearson Education, Inc.

La Niña – ENSO Cool Phase

- Increased pressure difference across equatorial Pacific
- Stronger trade winds
- Stronger upwelling in eastern Pacific
- Shallower thermocline
- Cooler than normal seawater
- Higher biological productivity

(b) Jan 2000 © 2011 Pearson Education, Inc

How often do El Niño Events occur?

- El Niño warm phase about every 2–10 years
- Highly irregular
- Phases usually last 12–18 months
- 10,000-year sediment record of events
- ENSO may be part of Pacific Decadal Oscillation (PDO)
 - Long-term natural climate cycle
 - Lasts 20–30 years

ENSO has Global Impacts

Notable ENSO Events

- 1982 1983
- 1997 1998
- Flooding, drought, erosion, fires, tropical storms, harmful effects on marine life
- Unpredictable

Predicting El Niño Events

- Tropical Ocean Global Atmosphere (TOGA) program
 - started in 1985
 - Monitors equatorial South Pacific
 - System of buoys
- Tropical Atmosphere and Ocean (TOA) project
 - Continues monitoring
- ENSO still not fully understood

7.5 – How Do Deep-Ocean Currents Form?

- Occur below the pycnocline
- As a consequence, they effect 90% of ocean waters
- They are created by variations in density of the ocean water
- This circulation system is then called thermohaline (temperature and salinity of ocean waters control their density)
- Thermohaline circulation is very slow: 10 to 20 km/yr

Origin of Thermohaline Circulation

- Originates in high latitude surface ocean
- Cooled, now dense surface water sinks and changes little
- Formation of sea ice increases the salinity, hence the density, of the water left behind, which starts to sink
- Deep-water masses can be identified on a temperature—salinity (T—S) diagram
 - Identifies deep water masses based on temperature, salinity, and resulting density

Thermohaline Circulation

North Atlantic Water Masses:

© 2011 Pearson Education, Inc.

Thermohaline Circulation

- Some deep-water masses
 - Antarctic Bottom Water
 - North Atlantic Deep Water
 - -Antarctic Intermediate Water
 - -Oceanic Common Water
- Cold surface seawater sinks at polar regions and moves equatorward

Conveyor Belt Circulation

- Dissolved oxygen in deep water
 - examples from the Cretaceous (greenhouse time)

- Conveyor-belt circulation and climate change
 - Plate tectonics changes geography
 - Climate changes affect deep-water circulation

7.6 – Can Power from Currents Be Harnessed as a Source of Energy?

- Currents carry more energy than winds
- Florida–Gulf
 Stream Current
 System
- Underwater turbines
 - Expensive
 - Difficult to maintain
 - Hazard to boating

