

What Kind of Photosynthetic Marine Organisms Exist?

- Many type of marine organisms, mostly microscopic, photosynthesize
 - Seed-bearing plants
 - Macroscopic algae
 - Microscopic algae
 - Bacteria

Seed-Bearing Plants

- The only plants found in ocean waters are members of the phylum Anthophita
 - Eelgrass (Zostera)
 - Surf grass (Phyllospadix)
 - Spartina (found in salt marshes)
 - different genera of Mangroves (found in salt marshes)

Surf grass and brown algae

Macroscopic Algae

- Various types of marine macro algae are typically found in shallow waters along the ocean margins
- Most of them are attached to the bottom, but a few species float
- While algae classification is based on more advanced concepts, algae color is a useful mean to describe them
 - Green algae
 - Red algae
 - Brown algae

Macroscopic Algae: Green

- Green algae (Chlorophyta) are more common in freshwaters
- Most species are intertidal or grow in bays
- Rarely exceeding 30 cm in size, they range from branched filaments to thin sheets
- Sea lettuce (Ulva) are typical of cold waters, while sponge weed (Codium) are more common in warm waters, and can actually reach a size of 6 m

Macroscopic Algae: Green

Sea lettuce (*Ulva*), left, is typical of cold waters

Sponge weed (*Codium*), right, is more common in warm waters, and can actually reach a size of 6 m

Macroscopic Algae: Red

- Red algae (Rodophyta) are the most abundant and widespread of marine macroscopic algae (rare in freshwaters)
- Over 400 species identified from intertidal to inner sublittoral zone
- Many are attached to the ocean bottom, either as branching forms or as encrusting organisms

Macroscopic Algae: Red

Red algae range in size from barely visible to beyond 3 m long

Found in both cold and warm waters, but warm waters species are very small

If living in upper, well-lighted zones, red algae tend to be.. Green, black, or purplish

Only deeper water varieties are brownish to actually pink-red in color

A red alga that thrives at -268 m

- Studies from a seamount off San Salvador (Bahamas) revealed a diverse multilayered macrophyte community of algae
- Their net productivity levels are comparable to shallow water seaweeds, although they receive only 1 to 2% of the light energy available at the surface and, at the bottom of the tier, only 0.0005%

The red algae Neogonolithium strictum, a crustose coralline form thrives (between -189 and -268 m from sea level)

Macroscopic Algae: Brown

- Brown algae (Phaeophyta) include the largest members of the attached species of marine algae
- Colors range from very light brown to black
- These algae prefer cold waters of mid-latitudes
- They include small Ralfsia (a dark and brown intertidal encrusting patch) and the very large bull kelp (Pelagophycus), which may grow from -30 m to the surface
- Other brown algae include Sargassum and Macrocystis

Clockwise from top left:

Ralfsia verrucosa

Macrocystis sp.

Pelagophycus porra

Microscopic Algae

- Microscopic algae make up, directly or indirectly, the source of food for more than 99% of marine animals
- Most are phytoplankton
- A few are "phytobenthos", that is they live on the bottom in the nearshore environment, where sunlight reaches the shallow ocean floor

Microscopic Algae: Golden

- Golden algae (Chrysophyta) are so called because they contain the orange-yellow pigment carotene
- They include coccolithophorids and diatoms
 - Seen in Chapter 4 (review!)
 - Phytoplankton

Microscopic Algae: Golden

Coccolithophores

- They are extremely small (they will escape plankton nets)
- Covered by small calcite plates called coccoliths (caCO3)
- They live in temperate and warmer surface waters and are a major contributor to deep marine limestones (calcareous oozes, chalk)

Diatoms

- Algae with a silica (SiO2) shell (test)
- Produce diatomaceous earth, chert
- Most productive of marine algae
- All have a pillow-box test

Microscopic Algae: Dinoflagellates

- Dinoflagellates
 (Pyrrophyta) are
 characterized by the
 presence of flagella (whip like structures) used for
 (limited) motion
- Abundant, but not important geologically because their shell is made of organic, and hence biodegradable, cellulose

GOLDEN ALGAE and DINOFLAGELLATES

- a. Diploneis (diatom)
- b. Emiliana huxleyi (coccolithophore)
- c. Protoperidimium divergens (dinoflagellate)
- d. Heterodinium whittingae (dinoflagellate)

Dinoflagellates and Red Tides

- Dinoflagellates contain a red pigment that can stain surface waters in red (red tides)
- This (and any) kind of harmful algal bloom can produce toxins that are detrimental to marine life (and humans that eat contaminated species)
- Algal blooms are related to abundance of nutrients in the ocean

Dinoflagellates Toxins

- Many red tides are not poisonous but can still kill marine animals because decomposition uses a lot of oxygen
- Some red tides release toxins that are absorbed by marine animals. Some are killed, some are not, but who eats them also gets poisoned
- Humans who eat affected shellfish, or swim in algal blooms can get paralytic shellfish poisoning which can lead to death in 15% of the cases

Dinoflagellates Toxins

- Certain tropical fish can also accumulate dinoflagellates toxins in their bodies
- Humans eating those fish can be poisoned by ciguatera
- Ciguatera is a sickness that is rarely fatal but it may take up to four weeks to clear
- Ciguatera is the most common kind of food poisoning in the world

Ocean Eutrophication and Dead Zones

- Ocean eutrophication is the enrichment of waters by a previously scarce nutrient that can trigger an overabundance of algae such as a HAB (Harmful Algal Bloom)
- While eutrophication can be natural, human waste, fertilizers, phosphates from detergents can cause algal blooms
- Algal blooms cause a drop in oxygen level upon death, because of the decomposition
- Waters can become hypoxic (or anoxic), and for animals that cannot move away it is death by asphyxiation
- Common in the Baltic Sea, at the mouth of the Mississippi River, Japan and Korea, U.S. east coast, English Channel, Adriatic Sea

Mississippi River Delta Eutrophication

Photosynthetic Bacteria

- We only recently realized the role of bacteria in marine photosynthesis
- New sampling techniques and genome sequencing studies have revealed bacteria's incredible abundance and importance in the oceans
- Some bacteria, such as Synechococcus, may be responsible for half of total photosynthetic biomass in oceans

Photosynthetic Bacteria

- Prochlorococcus can even be more abundant, arriving to make up at least half of the world's total photosynthetic biomass
- This implies that *Prochlorococcus* is probably the most abundant photosynthetic organism on Earth
- Recent gene-sequencing of bacteria from the Sargasso Sea revealed an unexpectedly high oceanic microbial diversity

Prochlorococcus, the most abundant and smallest of marine phytoplankton

Biological Productivity and Energy Transfer

part 2: Photosynthetic Marine Organisms

The end