

Animals of the Benthic Environment

Notes from the textbook, integrated with original contributions

Alessandro Grippo, Ph.D.

Introduction

- 98% of all marine species live in or on the ocean floor (benthos)
 - Do not confuse the number of species (more abundant in benthonic forms) with the biomass (more abundant in pelagic waters)
- Benthic communities include a variety of habitats
 - Corals need specific environmental conditions.
 - Hydrothermal vents support diverse communities that rely on chemosynthesis
- The distribution of the benthic biomass closely matches the distribution of chlorophyll in surface waters
- Most benthic organisms live on the shelf, at a depth shallower than the photic zone
- Ocean currents determine affect coastal temperatures and, as a consequence, species diversity

Distribution of Benthic Organisms

© 2011 Pearson Education, Inc.

Introduction

- This chapter describes:
 - Benthic communities that thrive along rocky shores
 - Benthic communities that thrive along soft sedimentcovered shores (sand and mud)
 - Benthic communities that thrive on the shallow offshore ocean floor
 - Benthic communities that thrive on the deep ocean floor

Communities on Rocky Shores

• Epifauna

- Sessile: Attached to substrate (e.g., marine algae)
- Mobile: Move over seafloor (e.g., crabs, snails)
- Moderate diversity of species
 - Greatest animal diversity at tropical latitudes
 - Greatest algae diversity at mid-latitudes

Intertidal Zonation

- Rocky shore:
 - Spray zone
 - above spring tide zone (supratidal)
 - Intertidal zone
 - High tide zone
 - Middle tide zone
 - Low tide zone

Spray Zone

- Supratidal zone
 - Organisms:
 - Avoid drying out
 - Many animals have shells
 - Few species of marine algae

(b) © 2011 Pearson Education

Intertidal Zone Organisms

- High tide zone
 - Animals have shells to avoid drying out
 - Marine algae—rock weeds with thick cell walls

(e) © 2011 Pearson Educatio

Intertidal Zone Organisms

• Middle tide zone

- More types of marine algae
- Soft-bodied animals

(g) © 2011 Pearson Education,

Intertidal Zone Organisms

Low tide zone

- Abundant algae
- Many animals hidden by sea weed and sea grass
- Crabs abundant in all intertidal zones

Communities on Sediment-Covered Shores

- In presence of soft sediments, life requires very different adaptations than on rocky shores, even if the intertidal zones are somehow similar
- There is less diversity but more individuals
- Most animals in this environment live buried in sediment (infauna)
- Microbial communities are also common, particularly when the soft sediment is mud and not sand

the physical environment of sediment

- Sediment-covered shores include
 - Coarse boulder beaches
 - Sand beaches
 - Salt marshes
 - Mud flat
- These are progressively lower-energy environments that are composed by progressively finer sediments
 - Particle size becomes smaller
 - Slope angle decreases
 - Sediment stability increases

- Along high-energy sandy beaches, a large quantity of water from breaking waves sinks into the sand
 - This water brings **oxygen** and nutrients to the animals that live there
 - Oxygen also enhances decomposition of dead tissues by bacteria
- In salt marshes and mud flats oxygen does not find a way to penetrate sediment
 - Decomposition occurs more slowly, or might even be absent (black muds), and these areas develop a characteristic "rotten egg" from hydrogen sulfide (H₂S) gas

Intertidal zonation

Figure 15.8 Intertidal zonation and common organisms of sediment-covered shores.

- Burrowing animals
- No stable, fixed surface
- Burrowing provides more stable environment
 - Less risk of temperature extremes and drying out

- Bivalve mollusks
 - Soft body, hard shell
 - Example: clams and mussels
 - Greatest number in low tide regions
- Annelid worms

Crustaceans

- Segmented body, hard exoskeleton, paired jointed limbs
- Example: crabs, lobsters

© 2011 Pearson Education, Inc.

Echinoderms

- Spiny skin
- Five tapered legs
- Example: starfish and heart urchin
- Meiofauna
 - Small, feed on bacteria

Mud Flats

- Eelgrass and turtle grass common
- Bivalves and other mollusks
- Fiddler crabs

Shallow Offshore Ocean Floor Communities

- Rocky bottoms (subtidal)
 - Kelp and kelp forests
 - Attaches to rocky bottoms
 - Can grow up to 0.6 meters (2 feet) per day
 - Productive ecosystems
 - Provides shelter for other organisms

© 2011 Pearson Education, Inc.

Kelp Distribution

Rocky Bottom Shallow Offshore Ocean Floor Communities

Lobsters

- Large, spiny antennae
- Live in water deeper than 20 meters (65 feet)
- Scavengers
- Also feed on live animals

Rocky Bottom Shallow Offshore Ocean Floor Communities

• Oysters

- Sessile bivalve mollusk:
- Thick shell
- Start life as plankton

Coral Reefs

- Reefs shallow water communities restricted to tropics
- Polyps individual corals

(a) © 2011 Pearson Education, Inc.

Coral Reef Distribution

© 2011 Pearson Education, Inc.

Conditions for Coral Reef Development

- Warm (but not hot) seawater
- Sunlight (for symbiotic algae)
- Strong waves or currents
- Clear seawater
- Normal salinity
- Hard substrate

Symbiosis of Coral and Algae

- Coral reefs made of algae, mollusks, foraminifers as well as corals
- Hermatypic coral mutualistic relationship with algae
 - Algae provide food
 - Corals provide nutrients
- Mixotrophs derive part of nutrition from algae

Coral Reef Zonation

© 2011 Pearson Education, Inc.

Importance of Coral Reefs

- Largest structures created by living organisms
 - Great Barrier Reef, Australia, more than
 2000 km (1250 miles) long
- Great diversity of species
- Important tourist locales
- Fisheries
- Reefs protect shorelines

Humans and Coral Reefs

- Fishing, tourist collecting, and sediment influx due to shore development harm coral reefs.
- Sewage discharge and agricultural fertilizers increase nutrients in reef waters.
 - Hermatypic corals thrive at low nutrient levels
 - Phytoplankton overwhelm at high nutrient levels
 - Bioerosion of coral reef by algae-eating organisms

Crown of Thorns Phenomenon

- Sea star eats coral polyps
- Outbreaks (greatly increased numbers) decimate reef

© 2011 Pearson Education, Inc.

Coral Reefs in Decline

- 30% healthy today, 41% healthy in 2000
- One third of corals high risk of extinction
- Humans greatest threat
- Other threats
 - Hurricanes
 - Global warming
 - Coral bleaching
 - Floods
 - Tsunami

Deep-Ocean Floor Communities

- Less known about than shallower water communities
 - Expensive to explore the deep
 - Limited oxygen
 - Robotic technology for exploration

Deep Ocean Physical Environment

- Bathyal, abyssal, hadal zones
- Light absent below 1000 meters (3300 feet)
- Temperature usually between -1.8°C (28.8°F) and 3°C (37°F)
- High oxygen
- High pressure
- Abyssal storms affect bottom currents

Deep Ocean Food Sources and Species Diversity

- No primary productivity
- Only 1 3% of euphotic food present
- Special adaptations for detecting food
- Species diversity equivalent to rain forest

Deep-Sea Hydrothermal Vent Biocommunities

- Discovery Alvin in 1977
- Galapagos Rift in Pacific Ocean
- Water temperature 8–12°C (46–54°F)
- Chimney vents, hot acidic water
 - Black smokers

Locations of Hydrothermal Vent Communities

Hydrothermal Vent Species

- Giant tubeworms
- Giant clams
- Giant mussels
- Crabs
- Microbial mats
- Life supported by chemosynthesis

(a) © 2011 Pearson Education, Inc.

Chemosynthesis

- Microscopic Archaea thrive on hydrogen sulfide from vents
 - Manufacture sugar, carbon dioxide, and dissolved oxygen
- Base of hydrothermal vent food chain

Hydrothermal Vent Communities

- Vents active for years or decades
- Animals species similar at widely separated vents
- Larvae drift from site to site
- "Dead whale hypothesis"
 - Large carcasses may be stepping stone for larvae

© 2011 Pearson Education, Inc.

Hydrothermal Vents and the Origins of Life

- Life on Earth may have originated at hydrothermal vents.
 - Uniform conditions
 - Presence of Archaea bacteria
 - Microbes with genes identical to those found in humans

Low-Temperature Seep Biocommunities

- Chemosynthetically support life
- Hypersaline seeps
 - High salinity
 - Florida Escarpment seeping water from limestone fractures

© 2011 Pearson Education, Inc.

Low-Temperature Seep Biocommunities

- Hydrocarbon seeps
 - Oil and gas seeps
 - Hydrogen sulfide and/o methane

(b) © 2011 Pearson Education, Inc.

(a)

Low-Temperature Seep Biocommunities

• Subduction zone seeps

- Juan de Fuca plate
- Folded sedimentary rocks
- Methane

Beneath the Sea Floor

- A new frontier
- Deep biosphere
- Microbes live in pore fluids
- Might represent much of Earth's total biomass

End of CHAPTER 15 Animals of the Benthic Environment