

Chalk (in white) and Chert Nodules (in black) at the Cretaceous/Paleogene boundary at Stevns Klimt, Højerup, Støre Heddinge (Sjælland, Denmark) © Alessandro Grippo

Micrite and Chert

- Micrite (microcrystalline calcite) and Chert (microcrystalline silica) can have various origins
- They can indicate deep-marine environments (with exceptions)
- Microscopic organisms that live in the ocean and make a shell (test) of either calcite or silica are the main contributors to the formation of Micrite (Chalk) and Chert (Diatomite and Radiolarite)

Deep-marine carbonates (and cherts)

- Two most common chemical compounds:
 - Calcium carbonate (CaCO₃)
 - Silica (SiO₂), often found in its hydrated form Opal (SiO₂·nH₂O)
- Include many kinds of single-celled organisms and a few kinds of simple multicellular organisms
- Plant-like protists (algae) are photosynthetic
 - dinoflagellates, diatoms, coccolithophorids
 - all these are very important in the fossil record
- Animal-like protists (or protozoans)
 - amoebas, zooflagellates, ciliates
 - radiolarians and foraminifera are amoeba-like protists that are also very important in the fossil record

 $\pmb{\mathsf{Clockwise}}\ \mathsf{from}\ \mathsf{upper}\ \mathsf{left:}\ \mathsf{live}\ \mathsf{Diatoms;}\ \mathsf{Coccolithophorids;}\ \mathsf{live}\ \mathsf{Foraminifer;}\ \mathsf{live}\ \mathsf{Radiolarian}$

Nekton, Benthos, Plankton

- Organisms that live in the ocean can be classified as:
 - Nekton: swimmers
 - example: dolphins, octopuses, squids, whales
 - Benthos: bottom dwellers
 - sessile (standing in one place, like a tree on land)
 - example: sea lilies
 - mobile (on the surface epifauna; digging into the substrate – infauna)
 - example: crabs and lobsters
 - Plankton: floaters

Important Planktonic Protists in the fossil record

- Phytoplankton (plant-like)
 - Diatoms and Coccolithophorids
- Zooplankton (animal-like)
 - Radiolarians and Foraminifera
- These organisms secrete a skeleton (also called a "test", or a shell)
- When they die, these skeletons sink to the bottom of the ocean and form a rock

All these organisms are microscopic: they can only be observed under a microscope.

Coccolithophorids are so small that they can only be imaged with a SEM (Scanning Electron Microscope)

	CaCO ₃ shell	SiO ₂ shell
Phytoplankton	Coccoliths (disks from Coccolithophorids)	Diatoms
Zooplankton	Foraminifera	Radiolarians

Coccoliths Foraminifer Diatom Radiolarian

Silica in Biogenous Sediments

 Tests from diatoms and radiolarians generate siliceous ooze.

 Siliceous oozes lithify into diatomaceous earth and radiolarites

(C)
© 2011 Pearson Education, Inc.

Calcium Carbonate in Biogenic Sediments

Tests from Coccolithophorids and Foraminifera will form a calcareous ooze

Coccolithophorids

- Also called nannoplankton
- Photosynthetic algae
- Coccoliths individual plates from dead organism
- Chalk
 - Lithified coccolith-rich ooze

Foraminifera

- Protozoans (zooplankton)
- Use external food
- Also form foraminifer ooze
- Can be mixed up with coccoliths
- Micrite, or micritic limestone
- If mixed 35-65% with abyssal clay, rocks are called Marls

Chalk Micrite Chert

Chalk from pelagic coccolith oozes: The K/Pg boundary at Stevns Klimt, Denmark

Distribution of Biogenous Sediments

Depends on three processes:

Productivity

- Number of organisms present in surface waters
- depends on availability of food and light (photosynthesis can be effective only in the photic zone, that is the first 100 m of the ocean form the surface)

Destruction

Many tests are dissolved at the bottom or even before reaching it

Dilution

- When other kinds of sediments are present, they *dilute* the oozes
- Typically it is lithogenous sediment that dilutes oozes
- Since lithogenous sediment is common in coastal areas, biogenous sediment is more indicative of deep-waters

Calcareous Ooze and the CCD

- CCD Calcite (or Carbonate) compensation depth
 - Depth where CaCO₃ readily dissolves
 - Rate of supply = rate at which the shells dissolve
- Warm, shallow ocean saturated with calcium carbonate
- Cool, deep ocean undersaturated with calcium carbonate
- Equilibrium reaction of calcite in water:
 - $CaCO_3 + H_2O + CO_2 \leftarrow \rightarrow Ca^{2+} + 2HCO_3^{-1}$

$CaCO_3 + H_2O + CO_2 \leftarrow \rightarrow Ca^{2+} + 2HCO_3^{-1}$

- CO₂ dissolves CaCO₃
- CO₂ stays in water with high pressure and low temperatures
 - conditions found in deep-ocean waters and shallow temperate to polar waters
 - CaCO₃ shells dissolve
- CO₂ leaves water with low pressure and high temperatures
 - conditions found in shallow tropical waters
 - CaCO₃ forms naturally
 - "Carbonate Factory"

INCREASING RATE OF CaCO3 DISSOLUTION

- Lysocline depth at which a significant amount of CaCO₃ begins to dissolve rapidly
- Scarce calcareous ooze below 5000 meters (16,400 feet) in modern ocean
- Ancient calcareous oozes at greater depths if moved by sea floor spreading

quick summary

- clastic sediment originate on land and are carried towards the ocean
- evaporites indicate dry conditions, and hence land, or special coastal environment (for instance, sabkha)
- travertine and tufa form on land
- oolitic limestones, reefs, stromatolites, fossiliferous limestones, coquina form in shallow ocean waters, mostly on carbonate shelves
- chalk, diatomite, radiolarite form in deep ocean waters, away from other clastic and chemical sediments
- micrite and chert are microcrystalline rocks that form when the original carbonate or silica component is dissolved and then re-crystallized