Introduction to
PLATE TECTONICS

part 2: from Continental Drift to Plate Tectonics
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PLATE TECTONICS

Earth’s surface is divided in a series of LITHOSPHERIC PLATES
that move passively around the surface,
dragged by convection in the ASTHENOSPHERE
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* Plate Tectonics
— Plates move relative to one another, mostly interacting at their edge, or boundary
— Boundaries between lithospheric plates are geologically active areas
— Plates are created and destroyed

PACIFIC e
OCEAN s

1,500 3,000 Miles . |* Volcanoes
=" ' . Earthquakes

~ 01,500 3,000 Kilometers




History of Plate Tectonics

e Continental Drift (Alfred Wegener, 1912)

— Continents move freely (“drift”) over Earth’s
surface, changing their position relative to one
another

* Sea-floor Spreading (Harry Hess, 1962)

— Sea floor forms along a mid-ocean ridge crest,
then moves horizontally away from it towards an
ocean trench



Wegener (1912)

All present-day continents were grouped together in a supercontinent he named
Pangea (“all Earth”), surrounded by a global ocean called Panthalassa (“all sea”)

a modern reconstruction of Pangea and Panthalassa in the Early to Mid Triassic, about 240 million years ago

from: jan.ucc.nau.edu/~rcb7/mollglobe.html
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into smaller continents
that have been moving
apart since then,
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geography of today
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What evidence did Wegener have?

* Four lines of evidence:
— Fit of the continents
— Similarity of rock types across oceans
— Similarity of fossil types across oceans

— Paleoclimate evidence from glaciations across
continents



1 - Fit of the continents and 2 - rock similarity
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Today’s Appalachian Mountains are the remnant of a
much longer mountain chain that predated the breakup

of Pangea. They continue from Newfoundland (Canada)
into Ireland, Scotland, and Norway




3 - Fossil similarity
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3 - Fossil similarity

Fossil remains of Cynognathus, a
Triassic land reptile approximately 3
m long, have been found in Argen-
tina and southern Africa.

Remains of the. Fossils of the fern Glossoptens, found
freshwater reptile in all of the southern continents, are

Mesosaurus have R S y proof that they were once joined.

been found in both
Africa \J

Brazil and Africa.
) Evidence of the Triassic
LL"d'a land reptile Lystrosaurus
pe i, . o
/\?n =N have been found in Africa,

Antarctica, and India.
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4 - Paleoclimate

— Glacial deposits

— Direction of glacial
motion
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1 — Fit of continents

2 — Rock similarity

4 — Direction of glacial
motion
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Wegener and Polar Wandering

Rocks indicate climate

If continents did not move,
then the poles did (case A)

If poles did not move, then the
continents drifted (case B)
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Ancient pole position
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position the same
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Wegener then plotted the
apparent wander of the poles,
using that concept as further
support for his idea of
Continental Drift



Continental Drift was rejected

Wegener’s (and his collaborators such as DuToit) could not explain how
continental drift would occur

They ended up saying that continents were “plowing” through hard crust
That is not possible
Their theory was rejected and forgotten
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The revival of Continental Drift
after World War |l

Military information was collected for submarine warfare
during World War Il

Information was declassified soon after war’s end

Two pioneering institutions:
— Woods Hole Oceanographic Institution (Massachusetts)
— Scripps Institution of Oceanography (California)

New investigations were started in:
— geophysical research (mostly paleomagnetism)
— the study of the sea floor



Paleomagnetism

Paleomagnetism studies ancient magnetic fields recorded in rocks
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Apparent Polar Wandering
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Seafloor Spreading (Hess, 1962)

Discovery of mid-ocean ridges, trenches, and of sea-floor
variable topography (it was not a flat, lifeless ocean after all!)

Hess said sea-floor moves like a conveyor belt
— Mid-ocean ridges are the site of spreading
— Trenches are the site of subduction

Motion is caused by subduction



Sea-floor Spreading, the conveyor model and
the three kinds of Plate Boundaries
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Hess’ observations

 Mid-Ocean Ridges

High heat flow
Basalt eruptions (basalt is an extrusive igneous rock rich in iron, hence called

Swelling of the ridge because of the heat flow

Tension caused by convection breaks the newly formed oceanic crust and
creates a rift valley

Shallow earthquakes are generated

e (Qceanic Trenches

Low heat flow

Negative gravity anomalies (mass is “missing”)
Deep-focus earthquakes

Andesitic volcanic arcs (island arcs or continental arcs)

 Age of the Sea-floor
— Sea-floor is geologically very young
— Age is increasing symmetrically away from the ridge



combining Continental Drift and Sea-floor Spreading:

the theory of PLATE TECTONICS is born

Plates are lithospheric
Plates can be big or small

Plates can be made of oceanic
crust, continental crust, or both

Interactions occur at plate
boundaries

The interior of a plate is
relatively stable

A plate whose leading edge is
made of continental crust would
not go in subduction because of
its low SG (2.7, compared to a
SG = 3 for the oceanic crust)

~ Continental crust
- 30-50kmthick
\(\"_ Bkinfsec \ "~ oo

Lithosphere

Upper mantle



How do we know Plates move?

* Vine and Matthews
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How are No mal and magnetizations
locked in the basalts on the ocean floor?
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The Mid-Ocean Ridge
and paleomagnetism:

the case from Iceland and the Atlantic Ocean

Magnetic stripes

— Geologists towed magnetometers
along ocean floor to measure
magnetic properties of rocks

— When mapped, the ocean floor
had stripes
* Areas of “regular” and
“irregular” magnetic fields

e Stripes were parallel to
oceanic ridges

» Sequences of stripe width
patterns matched the
sequences established by
geologists on land



The age of the Sea-floor as determined from magnetic anomalies
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Strike-slip vs. transform faults

* Further evidence for sea-floor spreading comes from
fractures along the mid-ocean ridge

— A strike-slip fault moves along its entire length

— A transform fault only moves between two offset portions
of the ridge crest
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measuring Plate motion: GPS data
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measuring Plate motion: UAVSAR data
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Plate Tectonics
end of part 2



