

Alessandro Grippo, Ph.D

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Structural Geology and Tectonics

- Branches of geology that deal with the reconstruction of movements that have occurred over time in Earth's Lithosphere
- from Latin (struere) and Greek (tektos) = to build
- movements include
 - simple motion
 - bending
 - breaking

Structural Geology and Tectonics

- If we know
 - under what conditions motion occurs
 - how deformations are originated
- Then we
 - get information for reconstructing Earth's History
 - big scale: plate motion (Tectonics)
 - medium-size scale: mountain building (Tectonics)
 - small scale: local deformation, as caused for instance by earthquakes (Structural Geology)
 - micro- and submicroscopic scale: deformation in rocks and minerals (Structural Geology)

Compression and Tension

Shear

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Shear stress Shear strain

How do we study Lithosphere's deformation?

- Qualitative and quantitative analysis
 - continuum mechanics
 - laboratory deformation testing
 - mathematical models
 - study of geophysical data
 - seismic, gravity, magnetic
 - satellite images, airborne and spaceborne data
 - petrology and geochemistry
 - sedimentology, stratigraphy, paleontology

Lithospheric deformations originate Structures

- A force (stress) causes a deformation (strain)
 - elastic deformation
 - brittle deformation
 - joints
 - faults
 - ductile deformation
 - folds

Elastic, Brittle, and Ductile Deformation

Attitudes: strike and dip

 In order to understand how tectonic deformation occurs we need to understand the orientation of structures in space

- This system is based on the strike and the dip of a surface (its attitude)
- Mostly used for geologic mapping, strike and dip are useful in understanding structures

Topographic Map vs. Geologic Map

 The STRIKE is a line that comes from the intersection of an inclined plane (a tilted layer, for instance) with an imaginary horizontal surface

Its direction can be measured in the field with a compass

 The DIP is is simply the angle of maximum inclination of our surface (layer)

The dip is always at 90° from the strike

The dip points in the direction of the tilt

Strike and Dip symbols

- Attitude is represented by a T-shaped symbol
 - the long arm of the T represents the strike
 - the short arm of the T represents the dip
 - a number is associated with the symbol, indicating the angle of dip

Vertical layers: dip is 90°

Duluth, Minnesota

© Alessandro Grippo

- A: the "normal" symbol for strike and dip: a layer tilted by 10° towards ENE
- B: vertical layers
- C: horizontal layers

FOLDS

Domes and Basins

A Strata before folding

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

B Open folds—the two diagrams show alternate ways that stresses may have been distributed to have caused the folding.

C Isoclinal ("hairpin") folds

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

D Overturned folds

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

E Recumbent folds

FRACTURES, or JOINTS

 Fractures are surfaces along which rocks or minerals have broken

 Fractures generate two free surfaces where none existed before

- Systematic Joints
 - planar, parallel to each other, regularly spaced

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Joint Sets

В

Other kinds of joints

Half Dome, Yosemite National Park, California

Columnar Joints

Devil's Tower National Park, Wyoming

FAULTS

- Faults: fractures along which motion occurs
- Centuries-old mining terminology used
 - Footwall
 - Block below the fault plane
 - Miner would stand here
 - Hanging wall
 - Block above the fault plane
 - Hang a lantern here

Fault types

- Fault types
 - Distinguished by direction of rock displacement
 - Normal dip-slip
 - Reverse dip-slip
 - Strike-slip

- Dip-slip faults"
 - Vertical motion
 - Normal Faults
 - the hanging wall moves downward with respect to the footwall (caused by extension)
 - Reverse Fault
 - the hanging wall moves upward with respect to the footwall (caused by compression)

- Normal (dip-slip) Fault
 - Hanging wall moves down relative to footwall

- Reverse (dip-slip) Fault
 - Hanging wall moves up relative to footwall

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Thrust Faults

- Transform (Strike-slip) Fault
 - Crust moves in horizontal direction

(c) Left-lateral strike—slip fault

- Some active faults do not extend to the surface
 - Blind Faults

Structural Geology and Tectonics

the end